Part Number Hot Search : 
100ES PS151 CMZ12 4HCT3 CY7C139 UI01N65 4LVC2G RFP2N18L
Product Description
Full Text Search
 

To Download HDSP2003LP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HDSP2000LP YELLOW HDSP2001LP HIGH EFFICIENCY RED HDSP2002LP GREEN HDSP2003LP
RED 0.150" 4-Character 5 x 7 Dot Matrix Serial Input Alphanumeric Display
Dimensions in inches (mm)
.083 (2.11) .175 (4.44) .005 (.13) .200 (5.08) .012 (.3) .002 (.05)
.146 (3.71)
.350 (8.89)
.300 (7.62) .010 (.25)
.699 (17.75) max. Part No. .200 (5.08) Pin 1 Indicator
HDSP2000LP YYWW OSRAM
.150 (3.81) EIA Date Code Luminous Intensity Code or Color Code for Yellow
Z
.170 (4.32)
FEATURES * Four 0.150" Dot Matrix Characters * Four Colors: Red, Yellow, High Efficiency Red, Green * Wide Viewing Angle: X Axis +50, Y Axis +75 * Built-in CMOS Shift Registers with Constant Current LED Row Drivers * Custom Fonts from Shift Registers * Easily Cascaded for Multiple Displays * TTL Compatible * End Stackable * Extended Operating Temperature Range: -40C to + 85C * Categorized for Luminous Intensity * All Displays Color Matched * Compact Plastic Package * 100% Burned-in and Tested
.100 (2.54) .005 (.13) non-cum.10 pl.
.020 (.51) .003 (.08) 12 pl. 3 4 5 6
1
2
12
11
10
9
8
7
Tolerance: .015 (.38)
Pin 1 2 3 4 5 6 7 8 9 10 11 12
Function Column 1 Column 2 Column 3 Column 4 Column 5 No Connection Data Out VB
VCC
Clock Ground Data In
DESCRIPTION The HDSP200XLP are four digit 5 x 7 dot matrix serial input alphanumeric displays. The displays are available in red, yellow, high efficiency red, or bright green. The package is a standard twelve-pin DIP with a flat plastic lens. The display can be stacked horizontally or vertically to form messages of any length. The HDSP200XLP has two fourteen-bit CMOS shift registers with built-in row drivers. These shift registers drive twenty-eight rows and enable the design of customized fonts. Cascading multiple displays is possible because of the Data In and Data Out pins. Data In and Out are easily input with the clock signal and displayed in parallel on the row drivers. Data Out represents the output of the 7th bit of digit number four shift register The shift register is level triggered. The like columns of each character in a display cluster are tied to a single pin (see Block Diagram). High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5 x 7 diode array.
See Appnote 44 at www.infineon.com/opto.
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178
1
April 4, 2000-11
DESCRIPTION (continued) The TTL compatible VB input may either be tied to VCC for maximum display intensity or pulse width modulated to achieve intensity control and reduce power consumption. In the normal mode of operation, input data for digit four, column one is loaded into the seven on-board shift register locations one through seven. Column one data for digits 3, 2, and 1 is shifted into the display shift register locations. Then column one input is enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4, and 5. If the decode time and load data time into the shift register is t, then with five columns, each column of the display is operating at a duty factor of: T DF = ------------------5 (T + t ) T+t, allotted to each display column, is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second. With columns to be addressed, this refresh rate then gives a value for the time T+t of: 1 [5 x (100)] =2.0 msec. If the device is operated at 5.0 MHz clock rate maximum, it is possible to maintain tNote: 1) Maximum allowable dissipation is derived from V =5.25 V, CC VB=2.4 V, VCOL=3.5 V, 20 LEDs on per character, 20% DF.
Figure 2. Maximum Allowable Power Dissipation vs. Temperature
1.0
PD - Max. Allowable Power Dissipation - W
0.8 Socket Thermal Resistance 0C/W 10C/W 20C/W 40C/W Tj(Max) = 100C 0.0 -60 -40 -20 0 20 40 60 80 100 120
0.6 0.4
0.2
Tamb - Ambient Temperature - C
AC Electrical Characteristics (VCC=4.75 to 5.25 V, TA=-40C to 85C) Symbol TSETUP THOLD TWL TWH F(CLK) TTHL, TTLH TPHL, TPLH Description Setup Time Hold Time Clock Width Low Clock Width High Clock Frequency Clock Transition Time Propagation Delay Clock to Data Out Min. 50 25 75 75 0 -- -- Max.(1) -- -- -- -- 5.0 200 125 Units ns ns ns ns MHz ns ns Fig. 1 1 1 1 1 1 1
Figure 1. Timing Characteristics
l/fCLOCK TWH CLOCK VIH VIL VIH DATA IN 2.0 V VIL 0.8 V TPLH, TPHL DATA OUT V 2.4 V OH 0.4 V V OL VIH VB 2.0 V VIL 0.8 V TOFF ON (illuminated) DISPLAY OFF (not illuminated) 90% 10% TON 2.0 V 0.8 V TSETUP THOLD TTHL TWL
Note: 1) V Pulse Width Modulation Frequency--50 kHz (max). B
Cleaning the Displays IMPORTANT--Do not use cleaning agents containing alcohol of any type with this display. The least offensive cleaning solution is hot D.l. water (60C) for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents. For post solder cleaning use water or non-alcohol mixtures formulated for vapor cleaning processing or non-alcohol mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in vapors at boiling is permissible. For suggested solvents refer to Appnote 19 at www.infineon.com/opto.
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
2
April 4, 2000-11
Recommended Operating Conditions Parameter Supply Voltage Data Out Current, Low State Data Out Current, High State Column Input Voltage, Column On HDSP2000LP (1) Column Input Voltage, Column On, HDSP2001LP/2002LP/2003LP Setup Time Hold Time Width of Clock Clock Frequency Clock Transition Time
Note: 1) See Figure 3: Peak column current versus column voltage
(1)
Symbol VCC IOL IOH VCOL VCOL TSETUP THOLD TW(CLK) TCLK TTHL
Min. 4.75 -- -0.5 2.4 2.75 70 30 75 -- --
Typ. 5.0 -- -- -- -- -- -- -- -- --
Max. 5.25 1.6 -- 3.5 3.5 -- -- -- 5.0 200
Units V mA mA V V ns ns ns MHz ns
Optical Characteristics Red HDSP2000LP Description Peak Luminous Intensity per LED (1,3) (Character Average) Peak Wavelength Dominant Wavelength Yellow HDSP2001LP Description Peak Luminous Intensity per LED (Character Average) Peak Wavelength Dominant Wavelength (2) High Efficiency Red HDSP2002LP Description Peak Luminous Intensity per LED (Character Average) Peak Wavelength Dominant Wavelength Green HDSP2003LP Description Peak Luminous Intensity per LED (Character Average) Peak Wavelength
(2) (1,3) (2) (1,3) (1,3) (2)
Symbol IVpeak Vpeak dom
Min. 105 -- --
Typ. (4) 200 655 639
Units cd nm nm
Test Conditions VCC=5.0 V, VCOL=3.5 V TA=25C, VB=2.4 V -- --
Symbol IVpeak Vpeak dom
Min. 400 -- --
Typ. (4) 1140 583 585
Units cd nm nm
Test Conditions VCC=5.0 V, VCOL=3.5 V TA=25C, VB=2.4 V -- --
Symbol IVpeak Vpeak dom
Min. 400 -- --
Typ. (4) 1430 635 626
Units cd nm nm
Test Conditions VCC=5.0 V, VCOL=3.5 V TA=25C, VB=2.4 V -- --
Symbol IVpeak Vpeak
Min. 650 --
Typ. (4) 1550 565
Units cd nm
Test Conditions VCC=5.0 V, VCOL=3.5 V TA=25C, VB=2.4 V --
dom -- 569 nm -- Dominant Wavelength Notes: 1) The displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package. 2) Dominant wavelength ( dom) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3) The luminous sterance of the LED may be calculated using the following relationships: LV (cd/m2)=IV (Candela)/A (Meter)2 LV (Footlamberts)= IV (Candela)/A (Foot)2 HDSP2000LP, A=5 58 x 10-8 m2=6 x 10-7 ft.2 HDSP2001/2/3LP, A=7.8 x 10-8m2=8.4 x 10-7ft.2 4) All typical values specified at V =5.0 V and T =25C unless otherwise noted. CC A
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178 HDSP200LP/1LP/2LP/3LP
3
April 4, 2000-11
Electrical characteristics (-40C to +85C, unless otherwise specified) Description Supply Current (quiescent) Symbol VCC Min. -- -- Supply Current (operating) Column Current at any Column Input (2) VCC iCOL (All) ICOL VB, Clock or Data Input, Threshold Low VB, Clock or Data Input, Threshold High Data Out Voltage VIL VIH VOH VOL Input Current Logical 0, VB only Input Current Logical 0 Data, Clock Power Dissipation per Package (2) Thermal Resistance IC Junction-to-Ambient IIL IIL PD RJ-A -- -- -- Typ.(1) 1 1 1.5 -- 335 -- 2.0 2.4 -- -30 -- -- -- -- -- -110 -1 0.4 85 -- 0.4 -300 -10 -- -- Max. 5 5 10.0 10 410 0.8 Units mA mA mA A mA V V V V A A W C/W/ Device VCC=5.0, VCOL=3.5 V, 17.5% DF 15 LEDs on per character, VB=2.4 V Test Conditions VB=0.4 V VB=2.4 V FCLK=5.0 MHz VB=0.4 V VB=2.4 V VCC=5.25 V VCOL=3.5 V All SR Stages=Logical 1 VCC=5.25 V VCLK=VDATA=2.4 V All SR Stages=Logical 1
VCC= 4.75 V-5.25 V IOH=-0.5 mA IOL=1.6 mA VCC=4.75 V ICOL=0 mA
VCC=4.75 V-5.25 V, VIL=0.8 V
Notes: 1) All typical values specified at V =5.0 V and T =25C unless otherwise noted. CC A 2) See Figure 3: Peak column current versus column voltage.
Figure 3. Peak Column Current vs. Column Voltage
600
ICOL- Peak Column Current - mA
500
400
300 HDSP2000 200 HDSP2001/2/3
100
Tamb = 25C, VCC = 5.25V All SR Stages = Logical 1
1.0 2.0 3.0 4.0 5.0 6.0
0 0.0
VCOL - Column Voltage - Volts
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
4
April 4, 2000-11
Figure 4. Block Diagram
Column Drive Inputs Column 1 2 34 5
LED Matrix 2
LED Matrix 3
LED Matrix 4
Blanking Control, VB
1234567 Rows
Rows 1-7
Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers
Serial Data Input
1234567
Rows 8-14
Rows 15-21
Rows 22-28
28-Bit SIPO Shift Register
Serial Data Output
Clock
Contrast Enhancement Filters Display Color Dim Red HDSP2000LP Panelgraphic Dark Red 63 Panelgraphic Ruby Red 60 Chequers Red 118 Plexiglass 2423 Panelgraphic Yellow 27 Panelgraphic Ruby Red 60 Chequers Red 112 Panelgraphic Green 48 Chequers Green 107 Ambient Lighting Moderate Polaroid HNCP37 3M Light Control Film Panelgraphic Gray 10 Chequers Gray 105 -- Bright
Yellow HDSP2001LP HER HDSP2002LP Green HDSP20013P
Polaroid HNCP 10-Glass* Marks Polarized MPC 30-25C** Note 1 Polaroid HNCP 10-Glass* Marks Polarized MPC 20-15C** Polaroid HNCP 10-Glass* Marks Polarized MPC 50-12C**
Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10. *Polaroid Corp. **Marks Polarized Corp. 1 Upland Rd., Bldg. #2 25-B Jefryn Blvd. W Norwood, MA 02062 Deer Park, NY 11729 800/225-2770 516/242-1300 FAX 516/242-1347 Marks Polarized Corp. manufactures to MIL-1-45208 inspection system.
General Quality Assurance Levels Generic data available.
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178 HDSP200LP/1LP/2LP/3LP
5
April 4, 2000-11
Thermal Considerations The small alphanumeric displays are hybrid LED and CMOS assemblies that are designed for reliable operation in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the junction temperature of the LEDs and CMOS ICs are kept as low as possible. Thermal Modeling HDSP200XLP displays consist of two driver ICs and four 5 x 7 LED matrixes. A thermal model of the display is shown in Figure 5. It illustrates that the junction temperature of the semiconductor = junction self heating + the case temperature rise + the ambient temperature. Equation 1 shows this relationship. Figure 5. Thermal model Equation 3. T J ( MAX ) - T A P DISPLAY = --------------------------------R JC + R CA P DISPLAY = 5V COL I COL ( n 35 ) DF + V CC I CC For further reference see Figures 2, 7, 8, 9, 10 and 11. Key to equation symbols
LED T1 R1 IC T2 R2 LED T1 R1 LED T1 R1 IC T2 R2 LED T1 R1
For ease of calculations the maximum allowable electrical operating condition is dependent upon the aggregate thermal resistance of the LED matrixes and the two driver ICs. All of the thermal management calculations are based upon the parallel combination of these two networks which is 15C/W. Maximum allowable power dissipation is given in Equation 3.
DF ICC ICOL n PCASE PCOL PDISPLAY PLED RCA RJC TA TJ(IC) TJ(LED) TJ(MAX) VCC VCOL VF(LED) ZJC
LED Power IC Power
LED Power
LED Power IC Power
LED Power
RCA
See Equation 1 below. The junction rise within the LED is the product of the thermal impedance of an individual LED (37C/W, DF=20%, F=200 Hz), times the forward voltage, VF(LED), and forward current IF(LED), of 13-14.5 mA. This rise averages TJ(LED)=1C. The table below shows the VF(LED) for the respective displays. Model Number Min. HDSP2000LP HDSP2001/2/3LP 1.6 1.9 VF Typ. 1.7 2.2 Max. 2.0 3.0
Duty factor Quiescent IC current Column current Number of LEDs on in a 5 x 7 array Package power dissipation excluding LED under consideration Power dissipation of a column Power dissipation of the display Power dissipation of a LED Thermal resistance case to ambient Thermal resistance junction to case Ambient temperature Junction temperature of an IC Junction temperature of a LED Maximum junction temperature IC voltage Column voltage Forward voltage of LED Thermal impedance junction to case
Optical Considerations The light output of the LEDs is inversely related to the LED diode's junction temperature as shown in Figure 6. For optimum light output, keep the thermal resistance of the socket or PC board as low as possible.
The junction rise within the LED driver IC is the combination of the power dissipated by the IC quiescent current and the 28 row driver current sinks. The IC junction rise is given in Equation 2. A thermal resistance of 28C/W results in a typical junction rise of 6C. See Equation 2 below. Equation 1. T J ( LED ) = P LED Z J C + P CASE ( R JC + R CA ) + T A
T J ( LED ) = [( I COL 28 )V F ( LED ) Z JC ] + [ ( n 35 )I COL DF ( 5V COL ) + V CC I CC ] [ R JC + R CA ] + T A Equation 2. T J ( IC ) = P COL ( R JC + R CA ) + T A T J ( IC ) = [ 5 ( V COL - V F ( LED ) ) ( I COL 2 ) ( n 35 )DF + V CC I CC ] [ R JC + R CA ] + T A
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
6
April 4, 2000-11
Figure 6. Normalized Luminous Intensity vs. Junction Temperature
10
Figure 9. Package Power Dissipation
1.5 Max. Package Power Dissipation - W Vcc = 5.25V, Icc = 10mA Vcol = 3.5, Icol = 410mA DF = 20%, Ta = 25C 1.0
Normalized Luminous Intensity
1
Normalized to: Ta = 25C
0.5
0.0 0 5 10 15 20 25 30 LEDs on per Character 35 40
.1 -60
-40 -20 0 20 40 60 80 100 120 140 Tj - LED Junction Temperature - C
Max. Package Power Dissipation - W
When mounted in a 10C/W socket and operated at Absolute Maximum Electrical conditions, the HDSP200XLP will show an LED junction rise of 17C. lf TA=40C, then the LED's TJ will be 57C. Under these conditions Figure 7 shows that the I V will be 75% of its 25C value. Figure 7. Maximum LED Junction Temperature vs. Socket Thermal Resistance
50 45 Tj - Delta LED Junction 40 Temperature - C 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 Socket Thermal Resistance - C/W 45 50 Vcol = 3.5V, Icol = 410mA Vcc =5.25V, Icc = 10mA n = 20 LEDs, DF= 20% P = 0.87W
Figure 10. Maximum Character Power Dissipation
1.5 Vcc = 5.25V, Icc = 10mA Vcol = 3.5, Icol = 410mA DF = 20%, Ta = 25C 1.0
0.5
0.0 0 5 10 15 20 25 30 LEDs on per Character 35 40
Figure 11. Character Power Dissipation
2.00 Character Power Dissipation - W Vcc = 5V, Icc = 5mA Vcol = 3.5V, Icol = 335mA 1.50 Duty Factor 20% 1.00 17% 10% 5%
Figure 8. Maximum Package Power Dissipation
1.5 Max. Package Power Dissipation - W Vcc = 5.25V, Icc = 10mA Vcol = 3.5, Icol = 410mA DF = 20%, Ta = 25C 1.0
0.50
0.00 0 5 10 15 20 25 30 LEDs on per Character 35 40
0.5
0.0 0 5 10 15 20 25 30 LEDs on per Character 35 40
2000 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) OSRAM Opto Semiconductors GmbH & Co. OHG * Regensburg, Germany www.osram-os.com * +49-941-202-7178
HDSP200LP/1LP/2LP/3LP
7
April 4, 2000-11


▲Up To Search▲   

 
Price & Availability of HDSP2003LP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X